On the geometrical properties of the coherent matching distance in 2D persistent homology
نویسندگان
چکیده
In this paper we study a new metric for comparing Betti numbers functions in bidimensional persistent homology, based on coherent matchings, i.e. families of matchings that vary in a continuous way. We prove some new results about this metric, including its stability. In particular, we show that the computation of this distance is strongly related to suitable filtering functions associated with lines of slope 1, so underlining the key role of these lines in the study of bidimensional persistence. In order to prove these results, we introduce and study the concepts of extended Pareto grid for a normal filtering function as well as of transport of a matching. As a by-product, we obtain a theoretical framework for managing the phenomenon of monodromy in 2D persistent homology.
منابع مشابه
The Coherent Matching Distance in 2D Persistent Homology
Comparison between multidimensional persistent Betti numbers is often based on the multidimensional matching distance. While this metric is rather simple to define and compute by considering a suitable family of filtering functions associated with lines having a positive slope, it has two main drawbacks. First, it forgets the natural link between the homological properties of filtrations associ...
متن کاملEffects of geometrical and geomechanical properties on slope stability of open-pit mines using 2D and 3D finite difference methods
Slope stability analysis is one of the most important problems in mining and geotechnical engineering. Ignoring the importance of these problems can lead to significant losses. Selecting an appropriate method to analyze the slope stability requires a proper understanding of how different factors influence the outputs of the analyses. This paper evaluates the effects of considering the real geom...
متن کاملInvariance properties of the multidimensional matching distance in Persistent Topology and Homology
Persistent Topology studies topological features of shapes by analyzing the lower level sets of suitable functions, called filtering functions, and encoding the arising information in a parameterized version of the Betti numbers, i.e. the ranks of persistent homology groups. Initially introduced by considering real-valued filtering functions, Persistent Topology has been subsequently generalize...
متن کاملStability of multidimensional persistent homology with respect to domain perturbations
Motivated by the problem of dealing with incomplete or imprecise acquisition of data in computer vision and computer graphics, we extend results concerning the stability of persistent homology with respect to function perturbations to results concerning the stability with respect to domain perturbations. Domain perturbations can be measured in a number of different ways. An important method to ...
متن کاملFree Vibration Analysis of 2D Functionally Graded Annular Plate considering the Effect of Material Composition via 2D Differential Quadrature Method
This study investigates the free vibration of the Two-Dimensional Functionally Graded Annular Plates (2D-FGAP). The theoretical formulations are based on the three-dimensional elasticity theory with small strain assumption. The Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) as an efficient and accurate semi-analytical approach is used to discretize the equations of motion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.06636 شماره
صفحات -
تاریخ انتشار 2018